
The VLDB Journal 10: 334–350 (2001) / Digital Object Identifier (DOI) 10.1007/s007780100057

A survey of approaches to automatic schema matching

Erhard Rahm1, Philip A. Bernstein2

1 Universität Leipzig, Institut für Informatik, 04109 Leipzig, Germany; (e-mail: rahm@informatik.uni-leipzig.de)
2 Microsoft Research, Redmond, WA 98052-6399, USA; (e-mail: philbe@microsoft.com)

Edited by P. Scheuermann. Received: 5 February 2001 / Accepted: 6 September 2001
Published online: 21 November 2001 –c© Springer-Verlag 2001

Abstract. Schema matching is a basic problem in many
database application domains, such as data integration, E-
business, data warehousing, and semantic query processing.
In current implementations, schema matching is typically per-
formed manually, which has significant limitations. On the
other hand, previous research papers have proposed many
techniques to achieve a partial automation of the match op-
eration for specific application domains. We present a taxon-
omy that covers many of these existing approaches, and we
describe the approaches in some detail. In particular, we distin-
guish between schema-level and instance-level, element-level
and structure-level, and language-based and constraint-based
matchers. Based on our classification we review some pre-
vious match implementations thereby indicating which part
of the solution space they cover. We intend our taxonomy and
review of past work to be useful when comparing different ap-
proaches to schema matching, when developing a new match
algorithm, and when implementing a schema matching com-
ponent.

Keywords: Schema matching – Schema integration – Graph
matching – Model management – Machine learning

1. Introduction

A fundamental operation in the manipulation of schema in-
formation isMatch, which takes two schemas as input and
produces a mapping between elements of the two schemas
that correspond semantically to each other [LC94, MIR94,
MZ98, PSU98, MWJ99, DDL00]. Match plays a central role
in numerous applications, such as web-oriented data integra-
tion, electronic commerce, schema integration, schema evo-
lution and migration, application evolution, data warehous-
ing, database design, web site creation and management, and
component-based development.

Currently, schema matching is typically performed man-
ually, perhaps supported by a graphical user interface. Obvi-
ously, manually specifying schema matches is a tedious, time-
consuming, error-prone, and therefore expensive process. This
is a growing problem given the rapidly increasing number of
web data sources and E-businesses to integrate. Moreover, as
systems become able to handle more complex databases and

applications, their schemas become larger, further increasing
the number of matches to be performed. The level of effort
is at least linear in the number of matches to be performed,
maybe worse than linear if one needs to evaluate each match in
the context of other possible matches of the same elements. A
faster and less labor-intensive integration approach is needed.
This requires automated support for schema matching.

To provide this automated support, we would like to see
a generic, customizable implementation of Match that is us-
able across application areas. This would make it easier to
build application-specific tools that include automatic schema
match. Such a generic implementation can also be a key com-
ponent within a more comprehensive model management ap-
proach, such as the one proposed in [BHP00, Be00, BR00],
where the mapping returned by a match operation may be
used as input to operations to merge schemas and compose
mappings.

Fortunately, there is a lot of previous work on schema
matching developed in the context of schema translation and
integration, knowledge representation, machine learning, and
information retrieval. The main goals of this paper are to sur-
vey these past approaches and to present a taxonomy that ex-
plains their common features. We expect the survey to be help-
ful both to designers of new approaches and to users who need
to select from a library of approaches.

In the next section, we summarize some example applica-
tions of schema matching. Section 3 defines the match oper-
ator, and Section 4 describes a high-level architecture for im-
plementing it. Section 5 provides a classification of different
ways to perform Match automatically. This section illustrates
both the complexity of the problem and (at least part of) the
solution space. We use the classification in Sects. 6 through
8 to organize our presentation of previously proposed tech-
niques and to explain how they may be applied in the overall
architecture. Section 9 is a literature review, which describes
some integrated solutions and how they fit in our classification.
Section 10 is the conclusion.

2. Application domains

To motivate the importance of schema matching, we summa-
rize its use in several database application domains.



E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching 335

2.1. Schema integration

Most work on schema match has been motivated by schema
integration, a problem that has been investigated since the
early 1980s: Given a set of independently developed schemas,
construct a global view [BLN86, EP90, SL90, PS98]. In an
artificial intelligence setting, this is the problem of integrating
independently developed ontologies into a single ontology.

Since the schemas are independently developed, they often
have different structure and terminology. This can obviously
occur when the schemas are from different domains, such as
a real estate schema and property tax schema. However, it
also occurs even if they model the same real world domain,
just because they were developed by different people in dif-
ferent real-world contexts. Thus, a first step in integrating the
schemas is to identify and characterize these interschema re-
lationships. This is a process of schema matching. Once they
are identified, matching elements can be unified under a co-
herent, integrated schema or view. During this integration, or
sometimes as a separate step, programs or queries are created
that permit translation of data from the original schemas into
the integrated representation.

A variation of the schema integration problem is to inte-
grate an independently developed schema with a given con-
ceptual schema. Again, this requires reconciling the structure
and terminology of the two schemas, which involves schema
matching.

2.2. Data warehouses

A variation of the schema integration problem that became
popular in the 1990s is that of integrating data sources into
a data warehouse. A data warehouse is a decision support
database that is extracted from a set of data sources. The ex-
traction process requires transforming data from the source
format into the warehouse format. As shown in [BR00], the
match operation is useful for designing transformations. Given
a data source, one approach to creating appropriate transfor-
mations is to start by finding those elements of the source that
are also present in the warehouse. This is a match operation.
After an initial mapping is created, the data warehouse de-
signer needs to examine the detailed semantics of each source
element and create transformations that reconcile those se-
mantics with those of the target.

Another approach to integrating a new data sourceS′ is to
reuse an existing source-to-warehouse transformationS⇒W.
First, the common elements ofS′ andS are found (a match
operation) and thenS⇒W is reused for those common ele-
ments.

2.3. E-commerce

In the current decade, E-commerce has led to a new motivation
for schema matching: message translation. Trading partners
frequently exchange messages that describe business trans-
actions. Usually, each trading partner uses its own message
format. Message formats may differ in their syntax, such as
EDI (electronic data interchange) structures, XML, or custom
data structures. They may also use different message schemas.

To enable systems to exchange messages, application devel-
opers need to convert messages between the formats required
by different trading partners.

Part of the message translation problem is translating be-
tween different message schemas. Message schemas may use
different names, somewhat different data types, and different
ranges of allowable values. Fields are grouped into structures
that also may differ between the two formats. For example,
one may be a flat structure that simply lists fields while an-
other may group related fields. Or both formats may use nested
structures but may group fields in different combinations.

Translating between different message schemas is, in part,
a schema matching problem. Today, application designers
need to specify manually how message formats are related. A
match operation would reduce the amount of manual work by
generating a draft mapping between the two message schemas,
which an application designer can subsequently validate and
modify as needed.

Schema match may also be helpful to applications being
considered for the semantic web [BHL01], such as mapping
messages between autonomous agents or matching declarative
mediator definitions.

2.4. Semantic query processing

Schema integration, data warehousing, and E-commerce are
all similar in that they involve the design-time analysis of
schemas to produce mappings and, possibly an integrated
schema.A somewhat different scenario is semantic query pro-
cessing – a run-time scenario where a user specifies the output
of a query (e.g., the SELECT clause in SQL), and the system
figures out how to produce that output (e.g., by determining
the FROM and WHERE clauses in SQL). The user’s speci-
fication is stated in terms of concepts familiar to her, which
may not be the same as the names of elements specified in the
database schema. Therefore, in the first phase of processing
the query, the system must map the user-specified concepts
in the query output to schema elements. This too is a natural
application of the match operation.

After mapping the query output to the schema elements,
the system must derive a qualification (e.g., a WHERE clause)
that gives the semantics of the mapping. Techniques for de-
riving this qualification have been developed over the past 20
years [MRSS82, KKFG84, WS90, RYAC00]. We expect that
these techniques can be generalized to specify the semantics
of a mapping produced by the match operation. However, an
investigation of this hypothesis is beyond the scope of this
paper.

3. The match operator

To define the match operator, Match, we need to choose a
representation for its input schemas and output mapping. We
want to explore many approaches to Match. These approaches
depend a lot on the kinds of schema information they use and
how they interpret it. However, they depend hardly at all on
that information’s internal representation, except to the extent
that it is expressive enough to represent the information of
interest. Therefore, for the purposes of this paper, we define



336 E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching

Table 1.Sample input schemas

S1 elements S2 elements

Cust
C#
CName
FirstName
LastName

Customer
CustID
Company
Contact
Phone

a schemato be simply aset of elementsconnected by some
structure.

In practice, a particular representation must be chosen,
such as an entity-relationship (ER) model, an object-oriented
(OO) model, XML, or directed graphs. In each case, there is
a natural correspondence between the building blocks of the
representation and the notions of elements and structure: enti-
ties and relationships in ER models; objects and relationships
in OO models; elements, subelements, and IDREFs in XML;
and nodes and edges in graphs.

We define a mapping to be a set ofmapping elements,
each of which indicates that certain elements of schemaS1
are mapped to certain elements inS2. Furthermore, each map-
ping element can have amapping expressionwhich specifies
how theS1 andS2 elements are related. The mapping ex-
pression may be directional, for example, a certain function
from theS1 elements referenced by the mapping element to
theS2 elements referenced by the mapping element, or it may
be non-directional, that is, a relation between a combination
of elements ofS1 andS2. It may use simple relations over
scalars (e.g., =,≤), functions (e.g., addition or concatena-
tion), ER-style relationships (e.g., is-a, part-of), set-oriented
relationships (e.g., overlaps, contains [LNE89]), or any other
terms that are defined in the expression language being used.

For example, Table 1 shows two schemasS1 and S2
representing customer information. A mapping betweenS1
and S2 could contain a mapping element relating Cust.C#
to Customer.CustID with the mapping expression “Cust.C#
= Customer.CustID”. A mapping element with the expres-
sion “Concatenate(Cust.FirstName, Cust.LastName) = Cus-
tomer.Contact” describes a mapping between twoS1 elements
and oneS2 element.

We define the match operation to be a function that takes
two schemasS1 andS2 as input and returns a mapping be-
tween those two schemas as output, called thematch result.
Each mapping element of the match result specifies that certain
elements of schemaS1 logically correspond to, i.e., match,
certain elements ofS2, where the semantics of this corre-
spondence is expressed by the mapping element’s mapping
expression.

Unfortunately, the criteria used to match elements ofS1
andS2 are based on heuristics that are not easily captured in a
precise mathematical way that can guide us in the implemen-
tation of Match. Thus, we are left with the practical, though
mathematically unsatisfying, goal of producing a mapping that
is consistent with heuristics that approximate our understand-
ing of what users consider to be a good match.

Similar to previous work we focus mostly on match algo-
rithms that return a mapping that does not include mapping
expressions. We therefore often represent a mapping as a simi-
larity relation,∼=, over the powersets ofS1 andS2, where each

pair in∼= represents one mapping element of the mapping. For
example, the result of calling Match on the schemas of Table
1 could be “Cust.C#∼= Customer.CustID”, “Cust.CName∼=
Customer.Company”, and “{Cust.FirstName, Cust.LastName}∼= Customer.Contact”. A complete specification of the result
of the invocation of Match would also include the mapping ex-
pression of each element, that is “Cust.C# = Customer.CustID”,
“Cust.CName = Customer. Company”, and “Concatenate
(Cust.FirstName, Cust.LastName) = Customer.Contact”. In
what follows, when mapping expressions are involved, we
will explicitly mention them. Otherwise, we will simply use∼=.

As we will see, some implementations of Match are similar
to join processing in relational databases, in that both Match
and Join are binary operations that determine pairs of corre-
sponding elements from their input operands. There are many
differences, of course. Match operates on metadata (schema
elements) and Join on data (rows of tables). Moreover, Match
is more complex than Join. Each element in the Join result
combines only one element of the first with one matching el-
ement of the second input, while an element in a match result
can relate multiple elements from both inputs. Furthermore,
Join semantics is specified by a single comparison expression
(e.g., an equality condition for natural join) that must hold
for all matching input elements. By contrast, each element
in a match result may have a different mapping expression.
Hence, the semantics of Match is less restricted than that of
Join and is more difficult to capture in a consistent way.

The similarity of Match and Join extends to OuterMatch
operations, which are useful counterparts to Match in much
the same way that OuterJoin is a counterpart to Join. A right
(or left) OuterMatch ensures that every element ofS2 (or S1)
is referenced by the mapping.A full OuterMatch ensures every
element of bothS1 andS2 are referenced by the mapping. By
ensuring that every element of a schemaS is referenced in the
mapping returned by Match, the mapping can be more easily
composed with other mappings that refer toS. Examples of
such compositions appear in [BR00], which introduced the
OuterMatch operation. Although the usage of OuterMatch in-
volves some subtlety, its implementation is a straightforward
extension of Match: given an algorithm for the match opera-
tion, OuterMatch can easily be computed by adding elements
to the match result that reference the otherwise non-referenced
elements ofS1 or S2. We therefore do not consider Outer-
Match further in this paper.

4. Architecture for generic match

When reviewing and comparing approaches to Match, it helps
to have an implementation architecture in mind. We therefore
describe a high-level architecture for a generic, customizable
implementation of Match.

Figure 1 illustrates the overall architecture. The clients are
schema-related applications and tools from different domains,
such as E-business, portals, and data warehousing. Each client
uses the generic implementation of Match to automatically
determine matches between two input schemas. XML schema
editors, portal development kits, database modeling tools and
the like may access libraries to select existing schemas, shown
in the lower left of Fig.1. The implementation of Match may



E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching 337

Global libraries 
(dictionaries, schemas 

…)

Generic Match 
implementation

Tool 1 

(Portal schemas)

Tool 2 

(E-business schemas)

Tool 3 (Data 

warehousing schemas)

Schema import/ export

Tool 4 (Database 

design schemas)

Internal schema
representation

Global libraries 
(dictionaries, schemas 

…)

Generic Match 
implementation

Tool 1 

(Portal schemas)

Tool 1 

(Portal schemas)

Tool 2 

(E-business schemas)

Tool 2 

(E-business schemas)

Tool 3 (Data 

warehousing schemas)

Tool 3 (Data 

warehousing schemas)

Schema import/ export

Tool 4 (Database 

design schemas)

Tool 4 (Database 

design schemas)

Internal schema
representation Fig. 1.High-level architecture of generic Match

Table 2.Full vs partial structural match (example)

S1 elements S2 elements

Address
Street
City
State
ZIP

CustomerAddress
Street
City
USState
PostalCode

full structural match of
Address and CustomerAddress

AccountOwner
Name
Address
Birthdate
TaxExempt

Customer
Cname
CAddress
CPhone

partial structural match ofAccountOwner and
Customer

also use the libraries and other auxiliary information, such as
dictionaries and thesauri, to help find matches.

We assume that the generic implementation of Match rep-
resents the schemas to be matched in a uniform internal rep-
resentation. This uniform representation significantly reduces
the complexity of Match by not having to deal with the large
number of different (heterogeneous) representations of
schemas. Tools that are tightly integrated with the framework
can work directly on the internal representation. Other tools
need import/export programs to translate between their na-
tive schema representation (such as XML, SQL, or UML) and
the internal representation. A semantics-preserving importer
translates input schemas from their native representation into
the internal representation. Similarly, an exporter translates
mappings produced by the generic implementation of Match
from the internal representation into the representation re-
quired by each tool. This allows the generic implementation
of Match to operate exclusively on the internal representation.

In general, it is not possible to determine fully automat-
ically all matches between two schemas, primarily because
most schemas have some semantics that affects the match-
ing criteria but is not formally expressed or often even docu-
mented. The implementation of Match should therefore only
determinematch candidates, which the user can accept, reject
or change. Furthermore, the user should be able to specify
matches for elements for which the system was unable to find
satisfactory match candidates.

5. Classification of schema matching approaches

In this section we classify the major approaches to schema
matching. Fig.2 shows part of our classification scheme to-
gether with some sample approaches.

An implementation of Match may use multiple match al-
gorithms ormatchers. This allows us to select the matchers
depending on the application domain and schema types. Given
that we want to use multiple matchers we distinguish two sub-
problems. First, there is the realization of individual matchers,
each of which computes a mapping based on a single match-
ing criterion. Second, there is the combination of individ-
ual matchers, either by using multiple matching criteria (e.g.,
name and type equality) within an integratedhybrid matcher
or by combining multiple match results produced by different
match algorithms within acomposite matcher. For individual
matchers, we consider the following largely-orthogonal clas-
sification criteria:
• Instance vs schema:matching approaches can consider

instance data (i.e., data contents) or only schema-level in-
formation.

• Element vs structure matching:match can be performed
for individual schema elements, such as attributes, or for
combinations of elements, such as complex schema struc-
tures.

• Language vs constraint:a matcher can use a linguistic-
based approach (e.g., based on names and textual descrip-
tions of schema elements) or a constraint-based approach
(e.g., based on keys and relationships).

• Matching cardinality:the overall match result may relate
one or more elements of one schema to one or more ele-
ments of the other, yielding four cases: 1:1, 1:n, n:1, n:m.
In addition, each mapping element may interrelate one
or more elements of the two schemas. Furthermore, there
may be different match cardinalities at the instance level.

• Auxiliary information:most matchers rely not only on the
input schemasS1 andS2 but also on auxiliary informa-
tion, such as dictionaries, global schemas, previous match-
ing decisions, and user input.



338 E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching

Automatic 
composition

Composite matchers

Schema Matching Approaches

Individual matcher approaches Combining matchers

Manual 
composition

Schema-only based Instance/contents-based

• Graph 
matching

Further criteria:
- Match cardinality
- Auxiliary information used…

Linguistic Constraint-
based

Structure-levelElement-level

• Type similarity
• Key properties

• Value pattern and 
ranges

Constraint-
based

Linguistic 

• IR techniques 
(word frequencies, 
key terms) Sample approaches

… … … … …

Element-level

Hybrid matchers

Constraint-
based

• Name similarity
• Description 

similarity
• Global 

namespaces

Automatic 
composition

Composite matchers

Schema Matching Approaches

Individual matcher approaches Combining matchers

Manual 
composition

Schema-only based Instance/contents-based

• Graph 
matching

Further criteria:
- Match cardinality
- Auxiliary information used…

Linguistic Constraint-
based

Structure-levelElement-level

• Type similarity
• Key properties

• Value pattern and 
ranges

Constraint-
based

Linguistic 

• IR techniques 
(word frequencies, 
key terms) Sample approaches

… … … … …

Element-level

Hybrid matchers

Constraint-
based

• Name similarity
• Description 

similarity
• Global 

namespaces

Fig. 2.Classification of schema matching approaches

Note that our classification does not distinguish between dif-
ferent types of schemas (relational, XML, object-oriented,
etc.) and their internal representation, because algorithms de-
pend mostly on the kind of information they exploit, not on
its representation.

In the following three sections, we discuss the main alter-
natives according to the above classification criteria. We dis-
cuss schema-level matching in Sect.6, instance-level matching
in Sect.7, and combinations of multiple matchers in Sect.8.

6. Schema-level matchers

Schema-level matchers only consider schema information, not
instance data. The available information includes the usual
properties of schema elements, such as name, description,
data type, relationship types (part-of, is-a, etc.), constraints,
and schema structure. In general, a matcher will find multiple
match candidates. For each candidate, it is customary to esti-
mate the degree of similarity by a normalized numeric value
in the range 0–1, in order to identify the best match candidates
(as in [PSU98, BCV99, DDL00, CDD01]).

We first discuss the main alternatives for match granularity
and match cardinality.Then we cover linguistic and constraint-
based matchers. Finally, we outline approaches based on the
reuse of auxiliary data, such as previously defined schemas
and previous match results.

6.1. Granularity of match (element-level vs structure-level)

We distinguish two main alternatives for the granularity of
Match, element-level and structure-level matching. For each

element of the first schema,element-level matchingdeter-
mines the matching elements in the second input schema. In
the simplest case, only elements at the finest level of granular-
ity are considered, which we call theatomic level, such as at-
tributes in an XML schema or columns in a relational schema.
For the schema fragments shown in Table 2, a sample atomic-
level match is “Address.ZIP∼= CustomerAddress.PostalCode”
(recall that “∼=” means “matches”).

Structure-level matching,on the other hand, refers to
matching combinations of elements that appear together in a
structure.A range of cases is possible, depending on how com-
plete and precise a match of the structure is required. In the
ideal case, all components of the structures in the two schemas
fully match. Alternatively, only some of the components may
be required to match (i.e., a partial structural match). Exam-
ples of the two cases are shown in Table 2. The need for partial
matches sometimes arises because subschemas of different do-
mains are being compared. For example, in the second row of
Table 2, AccountOwner may come from a finance database
while Customer comes from a sales database.

For more complex cases, the effectiveness of structure
matching can be enhanced by considering known equivalence
patterns, which may be kept in a library. One simple pattern
is shown in Fig.3 relating two structures in an is-a hierarchy
to a single structure. The subclass of the first schema is repre-
sented by a Boolean attribute in the second schema. Another
well-known pattern consists of two structures interconnected
by a referential relationship being equivalent to a single struc-
ture (essentially, the join of the two). We will see an example
of this in Sect.6.4.

Element-level matching is not restricted to the atomic level,
but may also be applied to coarser grained,higher (non-atomic)



E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching 339

Fig. 3.Equivalence pattern

levelelements. Sample higher-level granularities include file
records, entities, classes, relational tables, and XML elements.
In contrast to a structure-level matcher, such an element-level
approach considers the higher-level element in isolation, ig-
noring its substructure and components. For instance, the fact
that the elements “Address” and “CustomerAddress” in Ta-
ble 2 are likely to match can be derived by a name-based
element-level matching without considering their underlying
components.

Element-level matching can be implemented by algorithms
similar to relational join processing. Depending on the matcher
type, the match comparison can be based on such properties as
name, description, or data type of schema element. For each
element of a schemaS1, all elements of the other schemaS2
with the same or similar value for the match property have
to be identified. A general implementation, similar to nested-
loop join processing, compares eachS1 element with eachS2
element and determines a similarity metric per pair. Only the
combinations with a similarity value above a certain threshold
are considered as match candidates. For special cases, more
efficient implementations are possible. For example, as for
equi-joins, checking for equality of properties can be done
using hashing or sort-merge. The join-like implementation is
also feasible for hybrid matchers where we consider multiple
properties at a time (e.g., name + data type).

6.2. Match cardinality

An S1 (or S2) element can participate in zero, one or many
mapping elements of the match result between the two input
schemasS1 and S2. Moreover, within an individual map-
ping element, one or moreS1 elements can match one or
moreS2 elements. Thus, we have the usual relationship car-
dinalities, namely 1:1 and the set-oriented cases 1:n, n:1, and
n:m, between matching elements both with respect to differ-
ent mapping elements (global cardinality) and with respect to
an individual mapping element (local cardinality). Element-
level matching is typically restricted to local cardinalities of
1:1, n:1, and 1:n. Obtaining n:m mapping elements usually

Table 3.Match cardinalities (Examples)

Local match cardinalities S1 element(s) S2 element(s) Matching expression

1. 1:1, element level Price Amount Amount = Price

2. n:1, element-level Price, Tax Cost Cost = Price*(1+Tax/100)

3. 1:n, element-level Name FirstName,
LastName

FirstName, LastName =
Extract (Name,. . . )

4. n:1 structure-level
(n:m element-level)

B.Title,
B.PuNo,
P.PuNo,
P.Name

A.Book,
A.Publisher

A.Book, A.Publisher =
Select B.Title, P.Name
From B, P
Where B.PuNo=P.PuNo

requires considering the structural embedding of the schema
elements and thus requires structure-level matching.

Table 3 shows examples of the four local cardinality cases
for individual mapping elements. In row 1, the match is 1:1.
Previous work has mostly concentrated on such 1:1 matches
because of the difficulty of automatically determining the map-
ping expressions in the other cases. When matching multiple
S1 (or S2) elements at a time, we see that expressions are
used to specify how these elements are related. For example,
row 3 explains how FirstName and LastName are extracted
from Name. Another example is row 4, which uses a SQL ex-
pression combining attributes from two tables. It corresponds
to an n:m relationship at the attribute level (fourS1 attributes
match twoS2 attributes) and an n:1 relationship at the struc-
ture level (two tables, B and P, inS1 match one table, A, in
S2). The structure-level match ensures that the twoA elements
are derived together in order to obtain correct book-publisher
combinations.

The global cardinality cases with respect to all mapping
elements are largely orthogonal to the cases for individual
mapping elements. For instance in the example of row 1, we
have a global 1:1 match if no otherS1 elements matchAmount
and no otherS2 elements match Price. On the other hand, if
Price inS1 also matches otherS2 elements (e.g., Cost as in
row 2) we obtain a global 1:n match in combination with local
1:1 or 1:n matches.

Note that in addition to the match cardinalities at the
schema level, there may be different match cardinalities at the
instance level. For the first three examples in Table 3, oneS1
instance is matched with oneS2 instance (1:1 instance-level
match). The example in row 4 corresponds to an n:1 instance-
level match, which combines two instances, one of B and one
of P, into one of A. An example of n:m instance-level match-
ing is the association of individual sale instances ofS1 with
different aggregate sale instances (per month, quarter, etc.) of
S2.

Most existing approaches map each element of one schema
to the element of the other schema with highest similarity. This
results in local 1:1 matches and global 1:1 or 1:n mappings.
More work is needed to explore more sophisticated criteria for
generating local and global n:1 and n:m mappings, which are
currently hardly treated at all.

6.3. Linguistic approaches

Language-based or linguistic matchers use names and text
(i.e., words or sentences) to find semantically similar schema



340 E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching

elements. We discuss two schema-level approaches, name
matching and description matching.

Name matching

Name-based matching matches schema elements with equal
or similar names. Similarity of names can be defined and mea-
sured in various ways, including:

• Equality of names.
An important subcase is the equality of names from the
same XML namespace, since this ensures that the same
names indeed bear the same semantics.

• Equality of canonical name representations after stem-
ming and other preprocessing.
This is important to deal with special prefix/suffix sym-
bols (e.g., CName→ customer name, and EmpNO→
employee number)

• Equality of synonyms.
(E.g., car∼= automobile and make∼= brand)

• Equality of hypernyms.1

(E.g., bookis-a publication and articleis-a publication
imply book∼= publication, article∼= publication, and book∼= article)

• Similarity of names based on common substrings, edit
distance, pronunciation, soundex (an encoding of names
based on how they sound rather than how they are spelled),
etc. [BS01].
(E.g., representedBy∼= representative, ShipTo∼= Ship2)

• User-provided name matches.
(E.g., reportsTo∼= manager, issue∼= bug)

Exploiting synonyms and hypernyms requires the use of the-
sauri or dictionaries. General natural language dictionaries
may be useful, perhaps even multi-language dictionaries (e.g.,
English-German) to deal with input schemas of different lan-
guages. In addition, name matching can use domain- or enter-
prise-specific dictionaries and is-a taxonomies containing com-
mon names, synonyms and descriptions of schema elements,
abbreviations, etc. These specific dictionaries require a sub-
stantial effort to be built up in a consistent way. The effort is
well worth the investment, especially for schemas with rela-
tively flat structure where dictionaries provide the most valu-
able matching hints. Furthermore, tools are needed to enable
names to be accessed and (re-)used, such as within a schema
editor when defining new schemas.

Homonyms are equal or similar names that refer to dif-
ferent elements. Clearly, homonyms can mislead a matching
algorithm. Homonyms may be part of natural language, such
as “stud” meaning a fastener or male horse, or may be spe-
cific to a domain, such as “line” meaning a line of business
or a line item (i.e., row) of an order. A name matcher can
reduce the number of wrong match candidates by exploiting
mismatch information supplied by users or dictionaries. At
least, the matcher can offer a warning of the potential ambigu-
ity due to multiple meanings of the name. A more automated
use of mismatch information may be possible by using con-
text information, for example, to distinguish Order.Line from

1 X is a hypernym ofY ifY is a kind of X. For instance, hypernyms
of “oak” include “tree” and “plant”.

Business.Line. Such a technique blurs the distinction between
linguistic-based and structure-based techniques.

Name-based matching is possible for elements at different
levels of granularity. Furthermore, it can be applied across
levels, e.g., for a lower-level schema element to also consider
the names of the schema elements it belongs to (e.g., to find
that author.name∼= AuthorName). This is similar to context-
based disambiguation of homonyms.

Name-based matching is not limited to finding 1:1 matches.
That is, it can identify multiple relevant matches for a given
schema element. For example, it can match “phone” with both
“home phone” and “office phone”.

Name matching can be driven by element-level matching,
introduced in Sect. 6.1. In the case of synonyms and hyper-
nyms, the join-like processing involves a dictionary D as a
further input. If we think of a relation-like representation with
S1 (name, ...) // one row perS1 schema element
S2 (name, ...) // one row perS2 schema element
D (name1, name2,

similarity) // similarity score for
[name1, name2] between 0..1

then a list of all match candidates can be generated by the
following three-way join operation

Select S1.name, S2.name, D.similarity
From S1, S2, D
Where (S1.name = D.name1) and

(D.name2 = S2.name) and
(D.similarity > threshold)

This assumes that D contains all relevant pairs of the transi-
tive closure over similar names. For instance, if A-B-0.9 and
B-C-0.8 are in D, then we would expect D also to contain B-
A-0.9, C-B-0.8, and possibly A-C-σ, C-A-σ. Intuitively, we
would expect the similarity valueσ to be .9× .8 = .72, but this
depends on the type of similarity, the use of homonyms, and
perhaps other factors. For example, we might have deliver-
ship-.9 and ship-boat-.9, but not deliver-boat-σ for any sim-
ilarity value σ. One approach to assigning different weights
to different types of similarity relationships is discussed in
[BHP94].

Description matching

Often, schemas contain comments in natural language to ex-
press the intended semantics of schema elements. These com-
ments can also be evaluated linguistically to determine the
similarity between schema elements. For instance, this would
help find that the following elements match, by a linguistic
analysis of the comments associated with each schema ele-
ment:
S1: empn // employee name
S2: name // name of employee

This linguistic analysis could be as simple as extracting key-
words from the description which are used for synonym com-
parison, much like names. Or it could be as sophisticated as
using natural language understanding technology to look for
semantically equivalent expressions.



E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching 341

Table 4.Constraint-based matching (example)

S1 elements S2 elements

Employee Personnel

EmpNo – int, primary key Pno - int, unique

EmpName – varchar (50) Pname – string

DeptNo – int, references Department Dept - string

Salary - dec (15,2) Born - date

Birthdate – date

Department

DeptNo – int, primary key

DeptName – varchar (40)

6.4. Constraint-based approaches

Schemas often contain constraints to define data types and
value ranges, uniqueness, optionality, relationship types and
cardinalities, etc. If both input schemas contain such informa-
tion, it can be used by a matcher to determine the similarity
of schema elements [LNE89]. For example, similarity can be
based on the equivalence of data types and domains, of key
characteristics (e.g., unique, primary, foreign), of relationship
cardinality (e.g., 1:1 relationships), or of is-a relationships.

The implementation can often be performed as described
in Sect.6.1 with a join-like element-level matching, now us-
ing the data types, structures, and constraints in the compar-
isons. Equivalent data types and constraint names (e.g., string∼= varchar, primary key∼= unique) can be provided by a special
synonym table.

In the example in Table 4, the type and key information
suggest thatBorn matchesBirthdate andPnomatches ei-
therEmpNoorDeptNo . The remainingS2 elementsPname
andDept are strings and thus likely matchEmpNameor
DeptName.

As the example illustrates, the use of constraint infor-
mation alone often leads to imperfect n:m matches (match
clusters), as there may be several elements in a schema with
comparable constraints. Still, the approach helps to limit the
number of match candidates and may be combined with other
matchers (e.g., name matchers).

Certain structural information can be interpreted as con-
straints, such as intra-schema references (e.g., foreign keys)
and adjacency-related information (e.g., part-of relationships).
Such information tells us which elements belong to the same
higher-level schema element, transitively through multi-level
structures. Such constraints can be interpreted as structures
and therefore be exploited using structure matching approaches.
Such a matching can consider the topology of structures as
well as different element types (e.g., for attributes, tables /
elements, or domains) and possibly different types of struc-
tural connections (e.g., part-of or usage relationships).

Many schema structures are hierarchical, based on some
form of containment relationship. When performing a match
based on hierarchical structures, an algorithm can traverse the
structure either top-down or bottom-up.Atop-down algorithm
is usually less expensive than bottom-up, because matches at
a high level of the schema structure restrict the choices for
matching finer grained structure only to those combinations

with matching ancestors. However, a top-down algorithm can
be misled if top-level schema structures are very different, even
if finer grained elements match well. By contrast, abottom-up
algorithmcompares all combinations of fine grained elements,
and therefore finds matches at this level even if intermediate
and higher level structures differ considerably.

Referring back toTable 4, the previously identified atomic-
level matches are not sufficient to correctly matchS1 toS2 be-
cause we actually need to joinS1.Employee and
S1.Department to obtainS2.Personnel . This can be
detected automatically by observing that components of
S2.Personnel match components of bothS1.Employee
and S1.Department and that S1.Employee and
S1.Department are interconnected by foreign keyDeptNo
in Employee referencingDepartment . This allows us to
determine the correct n:m SQL-like match mapping

S2.Personnel (Pno, Pname, Dept, born) ∼=
Select S1.Employee.EmpNo,

S1.Employee.EmpName,
S1.Department.DeptName,
S1.Employee.Birthdate

From S1.Employee, S1.Department
Where (S1.Employee.DeptNo

= S1.Department.DeptNo)

Some inferencing was needed to know that the join should be
added. This inferencing can be done by mapping the problem
into one of determining the required joins in the universal
relation model [KKFG84].

6.5. Reusing schema and mapping information

We have already discussed the use of auxiliary information in
addition to the input schemas, such as dictionaries, thesauri,
and user-provided match or mismatch information. Another
way to use auxiliary information to improve the effective-
ness of Match is to support and exploit the reuse of com-
mon schema components and previously determined map-
pings. Reuse-oriented approaches are promising, since we ex-
pect that many schemas need to be matched and that schemas
often are very similar to each other and to previously matched
schemas. For example, in E-commerce, substructures often
repeat within different message formats (e.g., address fields
and name fields).

The use of names from XML namespaces or specific dic-
tionaries is already reuse-oriented.A more general approach is
to reuse not only globally defined names but also entire schema
fragments, including such features as data types, keys, and
constraints. This is especially rewarding for frequently used
entities, such as address, customer, employee, purchase or-
der, and invoice, which should be defined and maintained in a
schema library.While it is unlikely that the whole world agrees
on such schemas, they can be specified for an enterprise, its
trading partners, relevant standards bodies, or similar orga-
nizations to reduce the degree of variability. Schema editors
should access these libraries to encourage the reuse of pre-
defined schema fragments and defined terms, perhaps with a
wizard that observes when a new schema definition is similar
but not identical to one in a library. The elements reused in this
way should contain the ID of their originating library, e.g., via



342 E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching

Fig. 4.Scenario for reuse of an existing mapping

XML namespaces, so the implementation of Match can easily
identify and match schema fragments and names that come
from the same library.

A further generic approach is to reuse existing mappings.
We want to reuse previously determined element-level
matches, which may simply be added to the thesaurus. We also
want to reuse entire structures, which is useful when matching
different but similar schemas to the same destination schema,
as may occur when integrating new sources into a data ware-
house or digital library. For instance, this is useful if a schema
S1 has to be mapped to a schemaS2 to which another schema
S has already been mapped. IfS1 is more similar toS than to
S2, this can simplify the automatic generation of match candi-
dates by reusing matches from the existing result of Match(S,
S2), although some care is needed since matches are some-
times not transitive. Among other things, this allows the reuse
of manually specified matches.

An example for such a re-use is shown in Fig.4 for pur-
chase order schemas. We already have the match result be-
tweenS andS2, illustrated by the arrows. The new purchase
order schemaS1 is very similar toS. Thus, for every element
or structure ofS1 that has a corresponding element or fully
matching structure inS, we can use the existing mapping be-
tweenS andS2. In this (ideal) case, we can reuse all matches;
sinceS2 is fully covered, no additional match work has to be
done.

Such a reuse of previous matches may only be possible for
some part of a new schema. Hence a major problem is to deter-
mine which part of a new schema is similar to some part of a
previously matched one – a match problem in itself. Moreover,
similarity values determined for a previous match task may
depend on the application domain so that their reuse should
be restricted to related applications. For example, Salary and
Income may be considered identical in a payroll application
but not in a tax reporting application. To our knowledge these
reuse issues have not yet been addressed but deserve further
work.

7. Instance-level approaches

Instance-level data can give important insight into the contents
and meaning of schema elements. This is especially true when
useful schema information is limited, as is often the case for
semistructured data. In the extreme case, no schema is given,
but a schema can be constructed from instance data either
manually or automatically (e.g., a “data guide” [GW97] or

an approximate schema graph [WYW00] may be constructed
automatically from XML documents). Even when substan-
tial schema information is available, the use of instance-level
matching can be valuable to uncover incorrect interpretations
of schema information. For example, it can help disambiguate
between equally plausible schema-level matches by choosing
to match the elements whose instances are more similar.

Most of the approaches discussed previously for schema-
level matching can be applied to instance-level matching.
However, some are especially applicable here. For example:

• For text elements alinguistic characterizationbased on in-
formation retrieval techniques is the preferred approach,
e.g., by extracting keywords and themes based on the rel-
ative frequencies of words and combinations of words,
etc. For example, in Table 4, looking at theDept ,
DeptName andEmpNameinstances we may conclude
thatDeptName is a better match candidate forDept than
EmpName.

• For more structured data, such as numerical and string
elements, we can apply aconstraint-based characteriza-
tion, such as numerical value ranges and averages or char-
acter patterns. For instance, this may allow recognizing
phone numbers, zip codes, geographical names, addresses,
ISBNs, SSNs, date entries, or money-related entries (e.g.,
based on currency symbols). In Table 4, instance informa-
tion may help to makeEmpNothe primary match candidate
for Pno, e.g., based on similar value ranges as opposed to
the value range forDeptNo .

The main benefit of evaluating instances is a precise char-
acterization of the actual contents of schema elements. This
characterization can be employed in at least two ways. One ap-
proach is to use the characterization to enhance schema-level
matchers. For instance, a constraint-based matcher can then
more accurately determine corresponding data types based,
for example, on the discovered value ranges and character
pattern, thereby improving the effectiveness of Match. This
requires characterizing the content of both input schemas and
then matching the schemas with each other.

A second approach is to perform instance-level matching
on its own. First, the instances ofS1 are evaluated to char-
acterize the content ofS1 elements. Then, theS2 instances
are matched one-by-one against the characterizations ofS1
elements. The per-instance match results need to be merged
and abstracted to the schema level, to generate a ranked list
of match candidates inS1 for each (schema-level) element in



E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching 343

S2. Various approaches have been proposed to perform such
an instance matching or classification, such as rules, neural
networks, and machine learning techniques [BM01, DDL00,
DDH01, LC94, LC00, LCL00].

Instance-level matching can also be performed by utilizing
auxiliary information, e.g., previous mappings obtained from
matching different schemas. This approach is especially help-
ful for matching text elements by providing match candidates
for individual keywords. For instance, a previous analysis may
have revealed that the keyword “Microsoft” frequently occurs
for schema elements “CompanyName”, “Manufacturer”, etc.
For a new match task, if anS2 schema element X frequently
contains the term “Microsoft” this can be used to generate
“CompanyName” inS1 as a match candidate for X, even if
“Microsoft” does not often occur in the instances ofS1.

The above approaches for instance-level matching primar-
ily work for finding element-level matches. Finding matches
for sets of schema elements or structures would require char-
acterizing the content of these sets. Obviously, the main prob-
lem is the explosion of the number of possible combinations
of schema elements for which the instances would have to be
evaluated.

8. Combining different matchers

We have reviewed several types of matchers and many dif-
ferent variations. Each utilizes different information and has
thus different applicability and value for a given match task.
Therefore, a matcher that uses just one approach is unlikely
to achieve as many good match candidates as one that com-
bines several approaches. This can be done in two ways: a
hybrid matcher that integrates multiple matching criteria and
composite matchers that combine the results of independently
executed matchers. Combining multiple matching approaches
also opens the possibility to evaluate them simultaneously or
in a specific order.

Hybrid matchersdirectly combine several matching ap-
proaches to determine match candidates based on multiple
criteria or information sources (e.g., by using name match-
ing with namespaces and thesauri combined with data type
compatibility). They should provide better match candidates
plus better performance than the separate execution of multiple
matchers. Effectiveness may be improved because poor match
candidates matching only one of several criteria can be filtered
out early, and because complex matches requiring the joint
consideration of multiple criteria can be solved (e.g., the use of
keys, data types and names in Table 4). Structure-level match-
ing also benefits from being combined with other approaches
such as name matching. One way to combine structure- with
element-level matching is to use one algorithm to generate a
partial mapping and the other to complete the mapping.

A hybrid matcher can offer better performance than the ex-
ecution of multiple matchers by reducing the number of passes
over the schema. For instance, with element-level matching
hybrid matchers can test multiple criteria at a time on eachS2
element before continuing with the nextS2 element.

On the other hand, one can use acomposite matcherthat
combines the results of several independently executed match-
ers, including hybrid matchers. This ability to combine match-
ers is more flexible than hybrid matchers. A hybrid matcher

typically uses a hard-wired combination of particular match-
ing techniques that are executed simultaneously or in a fixed
order. By contrast, a composite matcher allows us to se-
lect from a repertoire of modular matchers based, for exam-
ple, on application domain or schema languages (e.g., differ-
ent approaches can be used for structured vs semi-structured
schemas). For example, one could use machine learning to
combine independent matchers, as in [DDH01] for instance-
level matchers and in [EJX01] for a combination of instance-
level and schema-level matchers. Moreover, a composite
matcher should allow a flexible ordering of matchers so that
they are either executed simultaneously or sequentially. In the
latter case, the match result of a first matcher is consumed and
extended by a second matcher to achieve an iterative improve-
ment of the match result.

Selection of matchers, and determining their execution or-
der and the combination of independently determined match
results can be done either automatically by the implementa-
tion of Match itself or its clients (e.g., tools), or manually by a
human user. An automatic approach can reduce the number of
user interactions, but it is difficult to achieve a generic solution
that is adaptable to different application domains (although the
approach could be controlled by tuning parameters). Alterna-
tively, a user can directly select the matchers to be executed,
their execution order and how to combine their results. Such
a manual approach is easier to implement and leaves more
control to the user. As discussed in Sect.4, user interaction is
necessary in any case because the implementation of Match
can only determine match candidates which a user can accept,
reject or change.

To deal with complex match tasks, the implementation of
Match should support an iterative development of match re-
sults with multiple user interactions. With a composite match
approach supporting the sequential execution of matchers,
user-supplied matches can be considered as a special matcher
that provides input for automatic matchers. Still, the matchers
should be aware of user-provided match input and not change
it but focus on the unmatched parts of the input schemas.

9. Sample approaches from the literature

9.1. Prototype schema matchers

In Table 5 we show how seven published prototype implemen-
tations fit the classification criteria introduced in Sect.5. The
table thus indicates which part of the solution space is cov-
ered by which implementations, thereby supporting a compar-
ison of the approaches. It also specifies the supported schema
types, the internal metadata representation format, the tasks to
be performed manually, and the application domain. We thus
indicate the suitability of the approaches with respect to key
requirements, in particular degree of automation (dependence
on manual input) and genericity with respect to the different
application domains and schema languages. The achievable
matching accuracy is related to the degree to which the solu-
tion spectrum is covered.

The table shows that all systems support multiple match-
ing criteria, six in the form of a hybrid matcher and only one,
LSD, by a composite match approach. A flexible ordering of



344 E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching

Table 5.Characteristics of proposed schema match approaches

SemInt
[LC94,
LC00,
LCL00]

LSD
[DDL00,
DDH01]

SKAT
[MWJ99,
MWK00]

TranScm
[MZ98]

DIKE
[PSU98a,b,
PSTU99]

ARTEMIS
[CDD01,
BCC*00]

CUPID
[MBR01]

Schema types relational,
files

XML XML, IDL,
text

SGML, OO ER relational, OO,
ER

XML, rela-
tional

Metadata representation unspecified
(attribute-
based)

XML schema
trees

graph-based
OO data
model

labeled graph graph hybrid
relational / OO
data model

extended ER

Match granularity element-
level:
attributes
(attribute
clusters)

element and
structure-
level

element/
structure-
level:
attributes /
classes

element-level element/
structure-
level:
entities /
relationships /
attributes

element/
structure-
level:
entities /
relationships /
attributes

element and
structure-
level

Match cardinality 1:1 1:1 1:1 and n:1 1:1 1:1 1:1 1:1 and n:1
Schema-
level
match

Name-based - name
equality /
synonyms

name
equality;
synonyms;
homonyms;
hypernyms

name
equality;
synonyms;
homonyms;
hypernyms

name equality;
synonyms;
hypernyms

name equality;
synonyms;
hypernyms

name
equality,
synonyms,
hypernyms,
homonyms,
abbreviations

Constraint-
based

several
criteria: data
type, length,
key info, . . .

- is-a
(inclusion);
relationship
cardinalities

is-a
(inclusion);
relationship
cardinalities

domain
compatibility

domain
compatibility.
In MOMIS,
uses keys,
foreign keys,
is-a,
aggregation

data type and
domain
compatibility,
referential
constraints

Structure match-
ing

- XML
classifier for
matching
non-leaf
elements
[DDH01]

similarity
w.r.t.
“related”
elements

similarity
w.r.t.
“related”
elements

matching of
neighborhood

matching of
neighborhood

matching
subtrees,
weighted
by leaves

Instance-
level
matchers

Text-oriented - Whirl
[Co98],
Bayesian
learners

- - - - -

Constraint-
oriented

character /
numerical
data pattern,
value
distribution,
averages

list of valid
domain
values

- - - - -

Reuse / auxiliary informa-
tion used

- comparison
with training
matches;
lookup for
valid domain
values

reuse of
general
matching
rules

- provision of
some
synonyms +
inclusions
with similarity
probabilities

thesauri thesauri,
glossaries

Combination of matchers hybrid composite
matcher with
automatic
combination
of matcher
results

hybrid hybrid
matchers;
fixed order of
matchers

hybrid hybrid hybrid



E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching 345

Table 5. (continued)

SemInt
[LC94,
LC00,
LCL00]

LSD [DDL00,
DDH01]

SKAT
[MWJ99,
MWK00]

TranScm
[MZ98]

DIKE
[PSU98a,b,
PSTU99]

ARTEMIS
[CDD01,
BCC*00]

CUPID
[MBR01]

Manual work / user input selection of
match criteria
(optional);
selection of
matching
attributes
from attribute
clusters

user-supplied
matches for
training sources;
user can specify
tuning
parameters and
integrity
constraints to
guide selection
of match
candidates
[DDH01]

match /
mismatch
rules +
iterative
refinement

resolving
multiple
matches,
adding new
matching
rules

resolving
structural
conflicts
(preprocess-
ing)

user can
adjust
weights in
match
calculations

user can ad-
just threshold
weights

Application area data
integration

data integration
with pre-defined
global schema

ontology
composition
for data
integration /
interoperabil-
ity

data
translation

schema
integration

schema
integration

data transla-
tion, but in-
tended to be
generic

Remarks neural
networks; C
implementa-
tion

“algorithms”
implicitly
represented
by rules

rules
implemented
in Java

algorithms to
calculate new
synonyms,
homonyms,
similarity
metrics

also
embedded in
the MOMIS
mediator,
with
extensions

different matchers, as discussed in Sect. 8, is not yet supported.
Most systems provide both structure-level and element-level
matching, in particular name and constraint-based matching.
However, only two of the seven systems consider instance
data and all systems focus on (local) 1:1 matches (two sys-
tems support global n:1 matches). Most prototypes have been
developed with a specific application domain in mind, mostly
data and schema integration, while Cupid strives for general
applicability. Most systems support multiple schema types,
while LSD is limited to XML and DIKE to ER sources. All
systems allow the user to validate generated match results (not
shown in the table) and require additional manual work to in-
strument the system, e.g., by providing prior match knowledge
or tuning parameters such as similarity thresholds. The main
forms of auxiliary information and reuse support is the pro-
vision of thesauri and glossaries and specification of specific
match knowledge. Reuse of previous match results is not yet
supported.

In this section, we discuss some specific features of the
seven approaches. In Sect.9.2, we briefly highlight some ad-
ditional schemes. Most of them offer less support with respect
to automatic matching and have thus not been included in Ta-
ble 5.

SemInt (Northwestern Univ.)

The SemInt match prototype [LC94, LC00, LCL00] creates a
mapping between individual attributes of two schemas (i.e., its
match cardinality is 1:1). It exploits up to 15 constraint-based
and 5 content-based matching criteria. The schema-level con-

straints use the information available from the catalog of a rela-
tional DBMS. Instance data is used to enhance this information
by providing actual value distributions, numerical averages,
etc. For each criterion, the system uses a function to map each
possible value onto the interval [0..1]. Using these functions,
SemIntdetermines amatch signaturefor each attribute con-
sisting of a value in the interval [0..1] for N matching criteria
(either all or a selected subset of the supported criteria). Since
signatures correspond to points in the N-dimensional space,
the Euclidian distance between signatures can be used as a
measure of the degree of similarity and thus for determining
an ordered list of match candidates.

In its main approach, SemInt uses neural networks to de-
termine match candidates. This approach requires similar at-
tributes of the first input schema (e.g., foreign and primary
keys) to be clustered together. Clustering is automatic by as-
signing all attributes with a distance below a threshold value
to the same cluster. The neural network is trained with the
signatures of the cluster centers. The signatures of attributes
from the second schema are then fed into the neural network
to determine the best matching attribute cluster from the first
schema. Based on their experiments the authors found that
the straightforward match approach based on Euclidian dis-
tance does well on finding almost identical attributes, while the
neural network is better at identifying less similar attributes
that match2. However, the neural network approach has sub-

2 To evaluate the effectiveness of a match approach, the authors use
the IR metrics recall and precision.Recallindicates which percentage
of all matches in the schemas are correctly determined.Precision
indicates the fraction of all determined matches that are correct.



346 E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching

stantial performance problems for larger schemas according
to [CHR97]. To improve efficiency, the approach identifies a
match only to attribute clusters leaving it to the user to select
the matching attributes from the cluster.

SemInt represents a powerful and flexible approach to
hybrid matching, since multiple match criteria can be se-
lected and evaluated together. This is in contrast to other
hybrid matchers using several criteria in a hard-wired fash-
ion3. SemInt does not support name-based matching or graph
matching for which it may be difficult to determine a useful
mapping to the [0..1] interval.

LSD (Univ. of Washington)

The LSD (Learning Source Descriptions) system uses
machine-learning techniques to match a new data source
against a previously determined global schema, producing a
1:1 atomic-level mapping [DDL00, DDH01]. It represents a
composite match scheme with an automatic combination of
match results. In addition to a name matcher they use several
instance-level matchers (learners) that are trained during a pre-
processing step. Given a user-supplied mapping from a data
source to the global schema, the preprocessing step looks at
instances from that data source to train the learner, thereby dis-
covering characteristic instance patterns and matching rules.
These patterns and rules can then be applied to match other
data sources to the global schema. Given a new data source,
each matcher determines a list of match candidates.

A global matcher that uses the same machine-learning
technology is used to merge the lists into a combined list of
match candidates for each schema element. It too is trained on
schemas for which a user-supplied mapping is known, thereby
learning how much weight to give to each component matcher.
New component matchers can be added to improve the global
matcher’s accuracy.

Although the approach is primarily instance-oriented, it
can exploit schema information too. A learner can take self-
describing input, such as XML, and make its matching deci-
sions by focusing on the schema tags while ignoring the data
instance values. LSD has also been extended to consider user-
supplied domain constraints on the global schema to eliminate
some of the previously determined match candidates for im-
proving match accuracy [DDH01].

SKAT (Stanford Univ.)

The SKAT (Semantic KnowledgeArticulation Tool) prototype
follows a rule-based approach to semi-automatically deter-
mine matches between two ontologies (schemas) [MWJ99].
Rules are formulated in first-order logic to express match and
mismatch relationships and methods are defined to derive new
matches. The user has to initially provide application-specific
match and mismatch relationships and then approve or reject
generated matches. The description in [MWJ99] deals with
name matching and simple structural matches based on is-a

3 According to our characterization in Sect.8, SemInt is not a com-
posite matcher since it does not combine independently calculated
match results.

hierarchies, but leaves open the details of what has been im-
plemented.

SKAT is used within the ONION architecture for ontology
integration [MWK00]. In ONION, ontologies are transformed
into a graph-based object-oriented database model. Matching
rules between ontologies are used to construct an “articulation
ontology” which covers the “intersection” of source ontolo-
gies. Matching is based heavily on is-a relationships between
the articulation ontology and source ontologies. The articula-
tion ontology is to be used for queries and for adding more
sources.

TransScm (Tel Aviv Univ.)

The TranScm prototype [MZ98] uses schema matching to de-
rive an automatic data translation between schema instances.
Input schemas are transformed into labeled graphs, which
is the internal schema representation. Edges in the schema
graphs represent component relationships. All other schema
information (name, optionality, #children, etc.) is represented
as properties of the nodes. The matching is performed node
by node (element-level, 1:1) starting at the top and presumes
a high degree of similarity between the schemas. There are
several matchers which are checked in a fixed order. Each
matcher is a “rule” implemented in Java. They require that the
match is determined by exactly one matcher per node pair. If
no match is found or if a matcher determines multiple match
candidates, user intervention is required, e.g., to provide a new
rule (matcher) or to select a match candidate. The matchers
typically consider multiple criteria and can thus represent hy-
brid approaches. For example, one of the matchers tests the
name properties and the number of children. Node matching
can be made dependent on a partial or full match of the nodes’
descendents.

DIKE (Univ. of Reggio Calabria, Univ. of Calabria)

In [PSU98a, PSTU99], Palopoli et al. propose algorithms
to automatically determine synonym and inclusion (is-a, hy-
pernym) relationships between objects of different entity-
relationship schemas. The algorithms are based on a set of
user-specified synonym, homonym, and inclusion properties
that include a numerical “plausibility factor” (between 0 and
1) about the certainty that the relationship is expected to
hold. In order to (probabilistically) derive new synonyms and
homonyms and the associated plausibility factors, the authors
perform a pairwise comparison of objects in the input schemas
by considering the similarity properties of their “related ob-
jects” (i.e., their attributes and the is-a and other relationships
the objects participate in).

In [PSU98b], the focus is to find pairs of objects in two
schemas that are similar, in the sense that they have the same
attributes and relationships, but are of different “types,” where
type∈ {entity, attribute, relationship}. The similarity of two
objects is a value in the range [0,1]. If the similarity exceeds
a given threshold, they regard the objects as matching, and
therefore regard a type conflict as significant. Thus, schema
matching is the main step of their algorithm. For a given pair
of objects o1 and o2 being compared, objects related to o1 and



E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching 347

o2 contribute to the degree of similarity of o1 and o2 with a
weight that is inversely proportional to their distance from o1
and o2, where distance is the minimum number of many-to-
many relationships on any path from o1 to o2. Thus, objects
that are closely related to o1 and o2 (e.g., their attributes and
objects they directly reference) count more heavily than those
that are reachable only via paths of relationships.

The above algorithms are embodied in the DIKE system,
described in [PTU00, Ur99]. Related algorithms by the same
authors are in [TU00, RTU01].

ARTEMIS (Univ. of Milano, Univ. of Brescia) & MOMIS
(Univ. of Modena and Reggio Emilia)

ARTEMIS is a schema integration tool [CDD01, CD99]. It first
computes “affinities” in the range 0 to 1 between attributes,
which is a match-like step. It then completes the schema in-
tegration by clustering attributes based on those affinities and
then constructing views based on the clusters.

The algorithm operates on a hybrid relational-OO model
that includes the name, data types, and cardinalities of at-
tributes and target object types of attributes that refer to other
objects. It computes matches by a weighted sum of name and
data type affinity and structural affinity. Name affinity is based
on generic and domain-specific thesauri, where each associ-
ation of two names is a synonym, hypernym, or general re-
lationship, with a fixed affinity for each type of association.
Data type affinity is based on a generic table of data type com-
patibilities. Structural affinity of two entities is based on the
similarity of relationships emanating from those entities.

ARTEMIS is used as a component of a heterogeneous
database mediator, called MOMIS (Mediator envirOment for
Multiple Information Sources) [BCV99, BCC*00, BCVB01].
MOMIS integrates independently developed schemas into a
virtual global schema on the basis of a reference object-
based data model, which it uses to represent relational, object-
oriented and semi-structured source schemas. MOMIS re-
lies on ARTEMIS, the lexical system WordNet, and the
description-logic-based inference tool ODB-Tools to produce
an integrated virtual schema. It also offers a query processor
(with optimization) to query the heterogeneous data sources.

Cupid (Microsoft Research)

Cupid is a hybrid matcher based on both element- and
structure-level matching [MBR01]. It is intended to be generic
across data models and has been applied to XML and rela-
tional examples. It uses auxiliary information sources for syn-
onyms, abbreviations, and acronyms. Like DIKE, each entry
in these auxiliary sources include a plausibility factor in the
[0, 1] range. Unlike DIKE, Cupid can exploit entries that are
ordinary words (e.g., Invoice is a synonym of Bill), without
requiring them to exactly match compound names of elements
(e.g., InvoiceTo or billaddress).

The algorithm has three phases. The first phase does
linguistic element-level matching and categorizes elements
based on names, data types, and domains (making Cupid hy-
brid). It parses compound element names into tokens based
on delimiters (e.g., ProductID becomes{Product, ID}), cate-
gorizes them based on their data types and linguistic content,

and then calculates a linguistic similarity coefficient between
data-type- and linguistic-content-compatible pairs of names
based on substring matching and auxiliary sources.The second
phase transforms the original schema into a tree and then does
a bottom-up structure matching, resulting in a structural sim-
ilarity between pairs of element. This transformation encodes
referential constraints into structures that can be matched just
like other structures (making Cupid constraint-based). The
similarity of two elements at the root of structures is based
on their linguistic similarity and the similarity of their leaf
sets. If the similarity exceeds a threshold, then their leaf set
similarity is incremented. The focus on leaf sets is based on
the assumption that much of the information content is rep-
resented in leaves and that leaves have less variation between
schemas than internal structure. Phase two concludes by cal-
culating a weighted mean of linguistic and structural similarity
of pairs of elements. The third phase uses that weighted mean
to decide on a mapping. This phase is regarded as application
dependent and not emphasized in the algorithm.

Experiments were run to compare Cupid to DIKE and
MOMIS on several schema examples. Cupid performed some-
what better overall. However, the more interesting results were
in the value of particular features of each algorithm on partic-
ular aspects of the examples, which are too detailed to sum-
marize here.

9.2. Related prototypes

This section describes five other prototypes that offer func-
tionality that is related to the schema matching approaches
discussed in this paper.

Clio (IBM Almaden and Univ. of Toronto)

The Clio tool under development at IBM Research in Al-
maden aims at a semi-automatic (user-assisted) creation of
match mappings between a given target schema and a new
data source schema. It consists of a set of Schema Readers,
which read a schema and translate it into an internal represen-
tation; a Correspondence Engine (CE), which is used to iden-
tify matching parts of the schemas or databases; and a Map-
ping Generator, which generates view definitions to map data
in the source schema into data in the target schema [HMNT99,
Mi01]. The correspondence engine makes use of n:m element-
level matches obtained from a knowledge-base or entered by
a user through a graphical user interface. In [MHH00], Miller
et al. present an algorithm for deriving a mapping between
the target and source, given a set of element and substruc-
ture matches and match expressions. It selects enough of the
matches to cover a maximal set of columns of the target schema
and uses constraint reasoning to suggest join clauses to tie to-
gether components of the source schema. [YMHF01] proposes
the use of sample data instances for the input schemas to in-
teractively guide the construction of a mapping query and to
verify its correctness.

Similarity flooding (Stanford Univ. and Univ. of Leipzig)

In [MGR02], Melnik et al. present a graph matching algo-
rithm called Similarity Flooding (SF) and explore its usability



348 E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching

for schema matching. The approach converts schemas into di-
rected labeled graphs and uses fixpoint computation to deter-
mine the matches between corresponding nodes of the graphs.
It produces a 1:1 local, m:n global mapping between schema
elements. The SF algorithm is implemented as one of the oper-
ators in a prototype of a generic schema manipulation tool. In
addition to the structural SF matcher the tool supports opera-
tors such as a name matcher, schema converters, and filters that
can be combined within scripts. A typical match script starts
with converting the two input schemas into the internal graph
representation. Then a name matcher is used to suggest an ini-
tial element-level mapping which is fed to the structural SF
matcher. In the last step, various filters are applied to select
relevant subsets of match results produced by the structural
matcher. The tool accepts several input formats, in particular
SQL DDL, XML, and RDF.

Delta (MITRE)

Delta represents a simple approach for determining attribute
correspondences utilizing attribute descriptions [BHFW95,
CHR97]. All available metadata about an attribute (e.g., text
description, attribute name, and type information) is grouped
and converted into a simple text string, which is presented as
a documentto a full-text information retrieval tool. The IR
tool can interpret such a document as a query. Documents of
another schema with matching attributes are determined and
ranked. Selection of the matches from the result list is left
to the user. The approach is easy to implement but depends
on the availability and expressiveness of text descriptions for
attributes. [CHR97] compares experimental match results ob-
tained with Delta with those obtained with the SemInt tool and
proposes to combine the two approaches, which would result
in a composite matcher.

Tess (Univ. of Massachusetts, Amherst)

Tess is a system for helping to cope with schema evolution
[Le00]. A schema is a set of types. Tess takes a definition of
the old and new type and produces a program to transform
data that conforms to the old type into data that conforms to
the new type. To accomplish this, it automatically creates a
mapping from the old to the new type, using a schema-level
matching algorithm. Like TransScm, it presumes a high de-
gree of similarity between the schemas. It identifies pairs of
types as match candidates, and then recursively tries to match
their substructure in a top-down fashion. Two elements are
match candidates if they have the same name, if they have a
pair of subelements that match (i.e., that are of the same type),
or if they use the same type constructor (in order of prefer-
ence, where name matching is most preferred). The recursion
bottoms out with scalar subelements. As the recursive calls
percolate back up, matching decisions on coarser-grained el-
ements are made based on the results of their finer-grained
subelements. In this sense, Tess performs both structure-level
and element-level matching.

Tree matching (NYU)

Zhang and Shasha developed an algorithm to find a mapping
between two labeled trees [ZS89, ZSW92, ZS97], which they
later implemented in a system for approximate tree matching
[WZJS94]. This is a purely structural match, with no notion
of synonym or hypernym. However, it can cope with name
mismatches by treating “rename” as one of the transforma-
tions that can map one tree into the other. Implementations
are available at [ZSW00].

There is, of course, a large literature on graph isomorphism
which could be useful. An investigation of its relevance to the
more specific problem of schema matching is beyond the scope
of this paper.

10. Conclusion

Schema matching is a basic problem in many database appli-
cation domains, such as heterogeneous database integration,
E-commerce, data warehousing, and semantic query process-
ing. In this paper, we proposed a taxonomy that covers many of
the existing approaches and we described these approaches in
some detail. In particular, we distinguished between schema-
and instance-level, element- and structure-level, and language-
and constraint-based matchers and discussed the combination
of multiple matchers. We used the taxonomy to characterize
and compare a variety of previous match implementations.
We hope that the taxonomy will be useful to programmers
who need to implement a match algorithm and to researchers
looking to develop more effective and comprehensive schema
matching algorithms. For instance, more attention should be
given to the utilization of instance-level information and reuse
opportunities to perform Match.

Past work on schema matching has mostly been done in the
context of a particular application domain. Since the problem
is so fundamental, we believe the field would benefit from
treating it as an independent problem, as we have begun doing
here. In the future, we would like to see quantitative work on
the relative performance and accuracy of different approaches.
Such results could tell us which of the existing approaches
dominate the others and could help identify weaknesses in
the existing approaches that suggest opportunities for future
research.

Acknowledgements.We are grateful for many helpful suggestions
from Sonia Bergamaschi, Silvana Castano, Chris Clifton, Hai Hong
Do, An Hai Doan, Alon Halevy, Jayant Madhavan, Sergey Melnik,
Renée Miller, Rachel Pottinger,Arnie Rosenthal, Dennis Shasha, and
the anonymous referees.

References

[BBC*00] Beneventano D, Bergamaschi S, Castano S, Corni A,
Guidetti R, Malvezzi G, Melchiori M, Vincini M (2000)
Information integration: the MOMIS project demon-
stration. In: Proc 26th Int Conf On Very Large Data
Bases, pp. 611–614

[BLN86] Batini C, Lenzerini M, Navathe SB (1986) A compara-
tive analysis of methodologies for database schema in-
tegration. ACM Comput Surv 18(4):323–364



E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching 349

[BFHW95] Benkley S, Fandozzi J, Housman E, Woodhouse G
(1995) Data element tool-based analysis (DELTA).
MITRE Technical Report MTR’95 B147

[BM01] Berlin J, Motro M (2001) Autoplex: automated discov-
ery of content for virtual databases. In: Proc 9th Int Conf
On Cooperative Information Systems (CoopIS), Lecture
Notes in Computer Science, vol. 2172. Springer, Berlin
Heidelberg New York, 2001, pp. 108–122

[BCV99] Bergamaschi S, Castano S, Vincini M (1999) Seman-
tic integration of semistructured and structured data
sources. ACM SIGMOD Record 28(1):54–59

[BCVB01] Bergamaschi S, Castano S, Vincini M, Beneventano D
(2001) Semantic integration of heterogeneous informa-
tion sources. Data Knowl Eng 36(3):215–249

[BS01] Bell GS, Sethi A (2001) Matching records in a national
medical patient index. CACM 44(9):83-88

[BHL01] Berners-Lee T, Hendler J, Lassila O (2001) The seman-
tic web. Sci Am 284(5):34–43

[Be00] Bernstein PA (2000) Is generic metadata management
feasible? Panel overview. In: Proc 26th Int Conf OnVery
Large Data Bases, pp. 660–662

[BHP00] Bernstein PA, Halevy A, Pottinger RA (2000) A vision
for management of complex models. A vision for man-
agement of complex models. ACM SIGMOD Record
29(4):55–63

[BR00] Bernstein PA, Rahm E (2000) Data warehouse scenar-
ios for model management. In: Proc 19th Int Conf On
Entity-Relationship Modeling, Lecture Notes in Com-
puter Science, vol. 1920. Springer, Berlin Heidelberg
New York, 2000, pp. 1–15

[BHP94] Bright MW, Hurson AR, Pakzad SH (1994) Automated
resolution of semantic heterogeneity in multidatabases.
TODS 19(2):212–253

[CD99] Castano S, De Antonellis V (1999) A schema analy-
sis and reconciliation tool environment. In: Proc Int
Database Eng Appl Symp (IDEAS), IEEE Computer,
New York, pp. 53–62

[CDD01] Castano S, De Antonellis V, De Capitani di Vemercati S
(2001) Global viewing of heterogeneous data sources.
IEEE Trans Data Knowl Eng 13(2):277–297

[CHR97] Clifton C, Housman E, Rosenthal A (1997) Experience
with a combined approach to attribute-matching across
heterogenenous databases. In: Proc 7, IFIP 2.6 Working
Conf. Database Semantics

[Co98] Cohen WW (1998) Integration of heterogeneous
databases without common domains using queries based
on textual similarity. In: Proc ACM SIGMOD Conf, pp.
201–212

[DDL00] Doan AH, Domingos P, Levy A (2000) Learning source
descriptions for data integration. In: ProcWebDBWork-
shop, pp. 81–92

[DDH01] Doan AH, Domingos P, Halevy A (2001) Reconciling
schemas of disparate data sources: a machine-learning
approach. In: Proc ACM SIGMOD Conf, pp. 509–520

[EP90] Elmagarmid AK, Pu C (1990) Guest editors’ introduc-
tion to the special issue on heterogeneous databases.
ACM Comput Surv 22(3):175–178

[EJX01] Embley DW, Jackman D, Xu L (2001) Multifaceted ex-
ploitation of metadata for attribute match discovery in
information integration. In: Proc Int Workshop on In-
formation Integration on the Web, pp. 110–117

[GW97] Goldman R, Widom J (1997) Dataguides: enabling
query formulation and optimization in semistructured
databases. In: Proc 23th Int Conf On Very Large Data
Bases, pp. 436–445

[HMNT99] Haas LM, Miller RJ, Niswonger B, Tork Roth, Schwarz
PM, Wimmers EL (1999) Transforming heterogeneous
data with database middleware: beyond integration.
IEEE Tech Bull Data Eng 22(1):31–36

[KKFG84] Korth HF, Kuper GM, Feigenbaum J, Van Gelder A,
Ullman JD (1984) System/U: a database system based
on the universal relation assumption. ACM TODS
9(3):331–347

[LNE89] Larson JA, Navathe SB, ElMasri R (1989) A theory of
attribute equivalence in databases with application to
schema integration. IEEETrans Software Eng 16(4):449
–463

[LC94] Li W, Clifton C (1994) Semantic integration in hetero-
geneous databases using neural networks. In: Proc 20th
Int Conf On Very Large Data Bases, pp. 1–12

[LC00] Li W, Clifton C (2000) SemInt: a tool for identifying
attribute correspondences in heterogeneous databases
using neural network. Data Knowl Eng 33(1):49–84

[LCL00] Li W, Clifton C, Liu S (2000) Database integration us-
ing neural network: implementation and experiences.
Knowl Inf Syst 2(1):73–96

[Le00] Lerner BS (2000) A model for compound type
changes encountered in schema evolution. ACM TODS
25(1):83–127

[MBR01] Madhavan J, Bernstein PA, Rahm E (2001) Generic
schema matching with Cupid. In: Proc 27th Int Conf
On Very Large Data Bases, pp. 49–58

[MRSS82] Maier D, Rozenshtein D, Salveter SC, Stein J, Warren
DS (1982) Toward logical data independence: a rela-
tional query language without relations. In: Proc ACM
SIGMOD Conf, pp. 51–60

[MGR02] Melnik S, Garcia-Molina H, Rahm E (2002) Similarity
flooding - a versatile graph matching algorithm. In: Proc
18th Int Conf Data Eng (to appear)

[MHH00] Miller RJ, Haas L, Hern’andez MA (2000) Schema map-
ping as query discovery. In: Proc 26th Int Conf On Very
Large Data Bases, pp. 77–88

[MIR94] Miller R,YE Ioannidis, Ramakrishnan R (1994) Schema
equivalence in heterogeneous systems: bridging theory
and practice. Inf Syst 19(1):3–31

[Mi01] Miller R, et al (2001) The Clio project: managing het-
erogeneity. ACM SIGMOD Record 30(1):78–83

[MZ98] Milo T, Zohar S (1998) Using schema matching to sim-
plify heterogeneous data translation. In: Proc 24th Int
Conf On Very Large Data Bases, pp. 122–133

[MWJ99] Mitra P, Wiederhold G, Jannink J (1999) Semi-
automatic integration of knowledge sources. In: Proc
of Fusion ’99, Sunnyvale, USA,

[MWK00] Mitra P, Wiederhold G, Kersten M (2000) A graph-
oriented model for articulation of ontology interdepen-
dencies. In: Proc Extending DataBase Technologies,
Lecture Notes in Computer Science, vol. 1777. Springer,
Berlin Heidelberg New York, 2000, pp. 86–100

[PS98] Parent C, Spaccapietra S (1998) Issues and approaches
of database integration. CACM 41(5):166–178

[PSTU99] Palopoli L, Sacca D, Terracina G, Ursino D (1999) A
unified graph-based framework for deriving nominal in-
terscheme properties, type conflicts and object cluster
similarities. In: Proc 4th IFCIS Int Conf On Coopera-
tive Information Systems (CoopIS), IEEE Comput, pp.
34–45

[PSU98a] Palopoli L, Sacca D, Ursino D (1998) Semi-automatic,
semantic discovery of properties from database
schemas. In: Proc Int. Database Engineering and Ap-
plications Symp. (IDEAS), IEEE Comput, pp. 244–253



350 E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching

[PSU98b] Palopoli L, Sacca D, Ursino D (1998) An auto-
matic technique for detecting type conflicts in database
schemas. In: Proc 7th Int Conf On Information and
Knowledge Management (CIKM), pp. 306–313

[PTU00] Palopoli L, Terracina G, Ursino D (2000) The system
DIKE: towards the semi-automatic synthesis of cooper-
ative information systems and data warehouses. In: Proc
ADBIS-DASFAA Conf, Matfyz, pp. 108–117

[RTU01] Rosaci D, Terracina G, Ursino D (2001) Deriving sub-
source similarities from heterogeneous, semi-structured
information sources. In: Proc 9th Int Conf On Cooper-
ative Information Systems (CoopIS), Lecture Notes in
Computer Science, vol. 2172. Springer, Berlin Heidel-
berg New York, 2001, pp. 150–162

[RYAC00] Rishe N, Yuan J, Athauda R, Chen SC, Lu X,
Ma X, Vaschillo A, Shaposhnikov A, Vasilevsky D
(2000) Semantic access: semantic interface for querying
databases. In: Proc 26th Int Conf On Very Large Data
Bases, pp. 591–594

[SL90] Sheth AP, Larson JA (1990) Federated database sys-
tems for managing distributed, heterogeneous, and au-
tonomous databases. ACM Comput Surv 22(3):183–
236

[TU00] Terracina G, Ursino D (2000) Deriving synonymies and
homonymies of object classes in semi-structured infor-
mation sources. Advances in data management, Tata
McGraw-Hill, pp. 21–32

[Ur99] Ursino D (1999) Semiautomatic approaches
and tools for the extraction and the exploita-
tion of intentional knowledge from hetero-
geneous information sources. Ph.D. Thesis.
http://www.ing.unirc.it/didattica/inform00/ursino/
tesi.zip

[WS90] Wald JA, Sorenson PG (1990) Explaining ambiguity in
a formal query language. ACM TODS 15(2):125–161

[WYW00] Wang Q, Yu J, Wong K (2000) Approximate graph
schema extraction for semi-structured data. In: Proc Ex-
tending DataBase Technologies, Lecture Notes in Com-
puter Science, vol. 1777. Springer, Berlin Heidelberg
New York, 2000, pp. 302–316

[WZJS94] Wang JTL, Zhang K, Jeong K, Shasha D (1994) A sys-
tem for approximate tree matching. IEEE Trans Data
Knowl Eng 6(4):559–571

[YMHF01] Yan L, Miller RJ, Haas LM, Fagin R (2001) Data-driven
understanding and refinement of schema mappings. In:
Proc ACM SIGMOD Conf, pp. 485–496

[ZS89] Zhang K, Shasha D (1989) Simple fast algorithms for
the editing distance between trees and related problems.
SIAM J Comput 18:1245–1262

[ZS97] Zhang K, Shasha D (1997) Approximate tree pattern
matching. In:ApostolicoA, Galil Z (eds) Pattern match-
ing in strings, trees, and arrays. Oxford University, Ox-
ford, pp. 341–371

[ZSW92] Zhang K, Shasha D, Wang JTL (1992) Fast serial
and parallel algorithms for approximate tree matching
with VLDC’s. In: Proc Int Conf Combinatorial Pattern
Matching, pp. 148–158

[ZSW00] Zhang K, Shasha D, Wang JTL:
http://cs.nyu.edu/cs/faculty/shasha/papers/agm.html,
http://cs.nyu.edu/cs/faculty/shasha/papers/tree.html,
http://cs.nyu.edu/cs/faculty/shasha/papers/
treesearch.html


